Identification of Traditional Herbal Leaves and Their Benefits Using K-Nearest Neighbors (KNN)
DOI:
https://doi.org/10.61132/ijmeal.v1i4.113Keywords:
Herbal leaves, K-Nearest Neighbors, image processing, feature extraction, medicinal benefitsAbstract
Abstract. This study presents a web-based system for identifying traditional herbal leaves using K-Nearest Neighbors (KNN) and image processing techniques focused on analyzing leaf shape and color. The dataset used consists of images of various types of herbal leaves, providing a basis for classification and medicinal benefit information retrieval. The system was tested with multiple leaf samples to assess accuracy, speed, and effectiveness in identifying leaf types based on visual characteristics. Results show that the system can recognize different types of herbal leaves and display information on their medicinal properties in a user-friendly interface..
References
Heryadi, Y., & Wahyono, T. (2020). MACHINE LEARNING (Konsep dan Implementasi). Gaya Media.
Jamaliah, I., Whidhiasih, R. N., & Maimunah, M. (2017). Identifikasi jenis daun tanaman obat hipertensi berdasarkan citra RGB menggunakan jaringan syaraf tiruan. PIKSEL: Penelitian Ilmu Komputer Sistem Embedded and Logic, 5(1), 1-11
Jananto, A. (2022). Penerapan Algoritma K-Means Clustering Untuk Perencanaan Kebutuhan Obat Di Klinik Citra Medika. Progresif: Jurnal Ilmiah Komputer, 18(1), 69-76.http://dx.doi.org/10.35889/progresif.v18i1.769
Kim, H., Kim, M., Park, Y., Yang, S. Y., Chung, H., Kwon, O., & Yeo, H. (2019). Visual classification of wood knots using k-nearest neighbor and convolutional neural network. Journal of the Korean Wood Science and Technology, 47(2), 229–238. https://doi.org/10.5658/WOOD.2019.47.2.229
M. S. Fajri, N. Septian, and E. Sanjaya, “Evaluasi Implementasi Algoritma Machine Learning KNearest Neighbors (kNN) pada Data Spektroskopi Gamma Resolusi Rendah,” Al-Fiziya: Journal of Materials Science, Geophysics, Instrumentation and Theoretical Physics, vol. 3, no. 1, pp. 9–14, Aug. 2020, doi: 10.15408/fiziya.v3i1.16180
Nugraha, I.N.B.S., Noviana, L.P.R., 2023, Perbandingan Klasifikasi Citra Daun Herbal Menggunakan Metode Logistic Regression dan Decision Tree Classifier Berdasarkan Fitur (Warna, GLCM, Bentuk), Journal Informatic Technology And Communication, 7(2), 126-133.
Pratama, E. F. A., Khairil, K., & Jumadi, J. (2022). Implementasi Metode K-Means Clustering Pada Segmentasi Citra Digital. Jurnal Media Infotama, 18(2), 291-301.doi:https://doi.org/10.37676/jmi.v18i2.2899
Raharja, B. D., & Harsadi, P. (2018). Implementasi Kompresi Citra Digital Dengan Mengatur Kualitas Citra Digital. Jurnal Ilmiah SINUS, 16(2), 71–77. https://doi.org/10.30646/sinus.v16i2.363
Shofrotun, F., Sutojo, T., Ignatius, D. R., & Setiadi, M. (2018). Identifikasi Tumbuhan Obat Herbal Berdasarkan Citra Daun Menggunakan Algoritma Gray Level Co-occurence Matrix dan K-Nearest Neighbor. 6(November 2017), 51–56. https://doi.org/10.14710/jtsiskom.6.2.2018.51-56.
Sibero, A. F. K., & Saleh, A. (2020). Identifikasi Tanaman Herbal Berdasarkan Citra Daun Menggunakan Cosine Similarity dan Features Extraction. 5(1).
Siregar, R. R. A., Siregar, Z. U., & Arianto, R. (2019). Klasifikasi Sentiment Analysis Pada Komentar Peserta Diklat Menggunakan Metode K-Nearest Neighbor. Kilat, 8(1), 81–92. https://doi.org/10.33322/kilat.v8i1.421
Sunandar, H. (2017). Perbaikan kualitas Citra Menggunakan Metode Gaussian Filter. MEANS (Media Informasi Analisa Dan Sistem), 2(1), 19–22. https://doi.org/10.54367/means.v2i1.18
Suyanto, Rachmawati, E., Sulistiyo, M. D., Wulandari, G. S., & Fachrie, M. (2022). Explainable Artificial Intelligence Menggunakan Metode-Metode Berbasis Nearest Neighbors. informatika.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 International Journal of Multilingual Education and Applied Linguistics

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.