Utilization of Image Processing to Detect Hair Length According to SOP at IPB Vocational School Using Region-Based Segmentation

Authors

  • Alya Putri Salsabila IPB University
  • Achmad Syahmi Rasendriya IPB University
  • Muthia Nurul Sa'adah IPB University
  • Wahyu Mustika Aji IPB University
  • Rizky Fadlurohman IPB University
  • Endang Purnama Giri IPB University
  • Gema Parasti Mindara IPB University

DOI:

https://doi.org/10.61132/ijmeal.v1i4.130

Keywords:

Image Processing, Hair Length Detectio, SOP Compliance, Web-Based Application

Abstract

This study utilizes image processing technology to detect student hair length in accordance with the Standard Operating Procedures (SOP) at IPB Vocational School. Manual supervision is often inefficient and prone to subjectivity, leading to the development of an automated detection system using a region-based segmentation approach. This method identifies the forehead area as a reference point, where hair is considered long if it exceeds specified limits. The system is implemented in a web-based application called Rambot, enabling students to verify their compliance with SOPs more easily. This technology aims to improve the accuracy and consistency of hair length monitoring.

References

Bota, Y. T., & Setiyawati, N. (2022). Development of business intermediary information system using Flask framework. Journal of Information Technology Ampera, 3(2), 79–93. https://doi.org/10.51519/journalita.volume3.isssue2.year2022.page79-93

Cloudinary. (n.d.). Region-based segmentation. Retrieved November 11, 2024, from https://cloudinary.com/glossary/region-based-segmentation

Harris, C. R., Millman, K. J., Van Der Walt, S. J., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N. J., Kern, R., Picus, M., Hoyer, S., Van Kerkwijk, M. H., Brett, M., Haldane, A., Del Río, J. F., Wiebe, M., Peterson, P., … Oliphant, T. E. (2020). Array programming with NumPy. Nature, 585(7825), 357–362. https://doi.org/10.1038/s41586-020-2649-2

Khalid, N. (2022). Review on region-based segmentation using watershed and region growing techniques and their applications in different fields. Journal La Multiapp, 3, 241–249. https://doi.org/10.37899/journallamultiapp.v3i5.714

Muchsin Chalik, A., Qowy, B. A., Hanafi, F., & Nuraminah, A. (2021). Hand mouse tracking with gesture classification using OpenCV and Mediapipe. Scientific Journal of Informatics and Communication Engineering, 1(2), 10–18. https://doi.org/10.55606/juitik.v1i2.323

Priyonggo, P., Kusumah, A., Khumaidi, A., Rahmat, M. B., & Endrasmono, J. (2022). Camera position tracking system using image processing for video capture position centering at Automation Academy. TRIAC Journal of Electrical and Computer Engineering, 9, 103–108. https://doi.org/10.21107/triac.v9i2.16021

Rawat, A. (2020). A review on Python programming. 3(12).

Zebari, R., & Sallow, A. (2021). Face detection and recognition using OpenCV. Journal of Soft Computing and Data Mining, 2. https://doi.org/10.30880/jscdm.2021.02.02.008

Downloads

Published

2024-11-14

How to Cite

Alya Putri Salsabila, Achmad Syahmi Rasendriya, Muthia Nurul Sa’adah, Wahyu Mustika Aji, Rizky Fadlurohman, Endang Purnama Giri, & Gema Parasti Mindara. (2024). Utilization of Image Processing to Detect Hair Length According to SOP at IPB Vocational School Using Region-Based Segmentation. International Journal of Multilingual Education and Applied Linguistics, 1(4), 48–56. https://doi.org/10.61132/ijmeal.v1i4.130