Traspoter Application Development: Website-Based Automatic Garbage Classification Using CNN Method

Authors

  • Bima Julian Mahardika IPB University
  • Budy Santoso IPB University
  • Aulia Anggraeni IPB University
  • Muhamad Ali Imron IPB University
  • Anatasya Wenita Putri IPB University
  • Endang Purnama Giri IPB University
  • Gema Parasti Mindara IPB University

DOI:

https://doi.org/10.61132/ijmeal.v1i4.148

Keywords:

Automatic Garbage Classification, Recycling, CNN, Python, OpenCV

Abstract

This research focuses on the development of automatic waste classification by applying the Convolutional Neural Network (CNN) method in a web-based application. This system is designed to help the waste management process through automatic sorting between organic and inorganic waste, so that it can support recycling efforts and reduce environmental impacts. In its application, this application utilizes the CNN algorithm to analyze images and recognize the type of waste with good accuracy. The development uses technologies such as Python and OpenCV to ensure efficient processing of image data, with the CNN model trained using a dataset of 22,564 images. Test results show excellent accuracy, reaching 99.27% for organic waste and 98.72% for inorganic waste.

References

Abror, Z. F. (2020). KLASIFIKASI CITRA KEBAKARAN DAN NON KEBAKARAN MENGGUNAKAN CONVOLUTIONAL NEURAL NETWORK. Jurnal Ilmiah Teknologi dan Rekayasa, 24(2), Article 2. https://doi.org/10.35760/tr.2019.v24i2.2389

Alfarizi, M. R. S., Al-farish, M. Z., Taufiqurrahman, M., Ardiansah, G., & Elgar, M. (2023). Penggunaan Python Sebagai Bahasa Pemrograman untuk Machine Learning dan Deep Learning. Karimah Tauhid, 2(1), 1–6. https://doi.org/10.30997/karimahtauhid.v2i1.7518

Anas, M., Hikmah, N., & Aprilia, I. (2023). Smart Trash Klasifikasi Sampah Otomatis Dengan Sensor Proximity Berbasis Arduino. Jurnal FORTECH, 3(2), 64–72. https://doi.org/10.56795/fortech.v3i2.103

Firmansyah, A., Itsnan, A. F., Apip, A., & Mulliya, R. T. (2024). SISTEM ABSENSI MAHASISWA MENGGUNAKAN FACE RECOGNITION DENGAN ALGORITMA CNN. 1(4).

Ibnul Rasidi, A., Pasaribu, Y. A. H., Ziqri, A., & Adhinata, F. D. (2022a). Klasifikasi Sampah Organik dan Non-Organik Menggunakan Convolutional Neural Network. Jurnal Teknik Informatika dan Sistem Informasi, 8(1). https://doi.org/10.28932/jutisi.v8i1.4314

Ibnul Rasidi, A., Pasaribu, Y. A. H., Ziqri, A., & Adhinata, F. D. (2022b). Klasifikasi Sampah Organik dan Non-Organik Menggunakan Convolutional Neural Network. Jurnal Teknik Informatika dan Sistem Informasi, 8(1). https://doi.org/10.28932/jutisi.v8i1.4314

Nasution, D., & Herdianto. (2022). Klasifikasi Objek Menggunakan Metode Convolutional Neural Network (CNN).

Qasim, M., & Khan, S. D. (2022). Detection and Relative Quantification of Neodymium in Sillai Patti Carbonatite Using Decision Tree Classification of the Hyperspectral Data. Sensors, 22(19), 7537. https://doi.org/10.3390/s22197537

Sungheetha, A. (2021). 3D Image Processing using Machine Learning based Input Processing for Man-Machine Interaction. Journal of Innovative Image Processing, 3, 1–6. https://doi.org/10.36548/jiip.2021.1.001

Sutarno, M. F. H., & Gaffar, M. R. (2023). Pembuatan Aplikasi Otomatisasi Kantor Formulir Spesimen Online Pada Bank Woori Saudara Kantor Cabang Diponegoro. Applied Business and Administration Journal, 2(3), 1–14. https://doi.org/10.62201/abaj.v2i3.55

Xin, M., & Wang, Y. (2019). Research on image classification model based on deep convolution neural network. EURASIP Journal on Image and Video Processing, 2019(1), 40. https://doi.org/10.1186/s13640-019-0417-8

Zayadi, H., & Hayat. (n.d.). MODEL INOVASI PENGELOLAAN SAMPAH RUMAH TANGGA. 2018, 2, 131–141.

Downloads

Published

2024-11-18

How to Cite

Bima Julian Mahardika, Budy Santoso, Aulia Anggraeni, Muhamad Ali Imron, Anatasya Wenita Putri, Endang Purnama Giri, & Gema Parasti Mindara. (2024). Traspoter Application Development: Website-Based Automatic Garbage Classification Using CNN Method. International Journal of Multilingual Education and Applied Linguistics, 1(4), 57–66. https://doi.org/10.61132/ijmeal.v1i4.148