Implementation of Automatic Attendance System Based on Face Recognition Using CNN Method in IPB University Vocational School Environment
DOI:
https://doi.org/10.61132/ijmeal.v1i4.94Keywords:
Automatic Attendance System, Face Recognition, CNN, Python, OpenCVAbstract
The research focuses on creating an automated attendance system using face recognition through the Convolutional Neural Network (CNN) approach at IPB University's Vocational School. The current manual attendance methods show limitations, such as potential inaccuracies in recording and the risk of cheating, like attendance proxies. To overcome these challenges, this study applies the CNN approach with Python and OpenCV, enabling automatic face detection and recognition for students. The system accurately logs attendance by identifying faces in real time. Testing indicates that the system records attendance reliably, whether with a single individual or with multiple faces present within a single frame.
References
Alfarizi, M. R. S., Al-farish, M. Z., Taufiqurrahman, M., Ardiansah, G., & Elgar, M. (2023). Using Python as a programming language for machine learning and deep learning. Karimah Tauhid, 2(1), 1-6. https://doi.org/10.30997/karimahtauhid.v2i1.7518
Azmi, K., Defit, S., & Sumijan, S. (2023). Implementation of convolutional neural network (CNN) for classification of West Sumatra clay batik. Unitek Journal, 16(1), 28-40. https://doi.org/10.52072/unitek.v16i1.504
Husain, A., Prastian, A. H. A., & Ramadhan, A. (2017). Design of online attendance system using Android to accelerate employee attendance process at PT. Sintech Berkah Abadi. Technomedia Journal, 2(1), 105-116. https://doi.org/10.33050/tmj.v2i1.319
Khair, M. A., Aldiyuda, P., Zukhrufa, M. Z., & Adrezo, M. (2024). Design of student attendance system based on face recognition in UPN Veteran Jakarta environment. Informatik: Journal of Computer Science, 20(1), 35-42. https://doi.org/10.52958/iftk.v20i1.6696
Muliawan, M. R., Irawan, B., & Brianorman, Y. (2015). Implementation of facial recognition with the Eigenface method in the attendance system. Coding Journal of Computers and Applications, 3(1).
Mustofa, I. H., & Winarno, E. (2023). Masked face recognition system with convolutional neural network method. Pixel: Scientific Journal of Computer Graphics, 16(1), 55-66. https://doi.org/10.51903/pixel.v16i1.1062
Napitupulu, F., & Ekaputri, C. (2017). Design and implementation of microcontroller-based motorcycle security system. eProceedings of Engineering, 4(2).
Prabowo, R. R., Kusnadi, K., & Subagio, R. T. (2020). Automatic monitoring and feeding system in fish farming using WEMOS with the Internet of Things (IoT) concept. Jurnal Digit: Digital of Information Technology, 10(2), 185-195. http://dx.doi.org/10.51920/jd.v10i2.169
Santoso, B., & Kristianto, R. P. (2020). Implementation of OpenCV use in face recognition for student lecture attendance system. Sistemasi: Journal of Information Systems, 9(2), 352-361. https://doi.org/10.32520/stmsi.v9i2.822
Setiono, P. R., Sompie, S. R., & Najoan, M. E. (2020). Face recognition application for Raspberry Pi-based class attendance system. Journal of Informatics Engineering, 15(3), 179-188. https://doi.org/10.35793/jti.v15i3.31290
Zulkhaidi, T. C. A. S., Maria, E., & Yulianto, Y. (2020). Facial pattern recognition with OpenCV. Journal of Information Technology Engineering (JURTI), 3(2), 181-186. http://dx.doi.org/10.30872/jurti.v3i2.403
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 International Journal of Multilingual Education and Applied Linguistics

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.